Gemeinde Meßstetten-Tieringen Zollernalbkreis

Niederschlags-Abfluss Berechnungen natürliches Einzugsgebiet L440 neu

im Auftrag von Prof. Dr. -Ing. E. Vees und Partner Baugrundinstitut GmbH

- Erläuterungsbericht -

Inhaltsverzeichnis

······································		Seite
1	Ausgangssituation	2
2 2.1	Beschreibung des Niederschlags-Abfluss / Flussgebietsmodells Einzugsgebiete	2
2.2	Landnutzung	3
2.3	Wasserdurchlässigkeit im Boden	3
2.4	Geländeneigung	3
2.5	Bemessungsniederschlag	4
3	Ergebnisse des Niederschlags-Abfluss / Flussgebietsmodell	5
4	Hinweise zur Verwendung / Einordnung der Daten	6
5	Anlagen 1 - 4	6

1 Ausgangssituation

Das Büro ISW wurde über das Büro Dr. Vees, Leinfelden-Echterdingen, mit der Ermittlung der maßgeblichen Wassermengen beauftragt, welche aus dem natürlichen Einzugsgebiet oberhalb des Neubaus der L 440 abgeleitet werden müssen.

2 Beschreibung des Niederschlags-Abfluss / Flussgebietsmodells

Die Programme LUNA und LUNA-P der Fa. Rehm Software GmbH [Ravensburg] dienen zur Berechnung von Niederschlag-Abfluss- sowie Flussgebietsmodellen. In beiden Programmen sind alle derzeit gängigen Verfahren zur Simulation der Abflussbildung und Abflusskonzentration enthalten. Nach Vorgabe von Regenereignissen und Gebietskenndaten berechnet LUNA und LUNA-P die Einheits- und Abflussganglinien eines Einzugsgebietes. [vgl. Rehm Handbuch].

In den vorliegenden Niederschlag-Abfluss Berechnungen wurden sowohl für den zeitlichen Verlauf des Abflussbeiwertes als auch für die Einheitsganglinie das Verfahren nach LUTZ angewendet. Berücksichtigt werden neben Flächengrößen, Bemessungsregen und Befestigungsgrad der Einzugsgebiete weitere Parameter für die Abflussbildung wie beispielsweise Bodenart, Gefälle und Landnutzung. Die entsprechenden Niederschlagsspenden wurden dem KOSTRA-Atlas [2010] des Deutschen Wetterdienstes entnommen [siehe Anlage 1].

Da sich das Hangwasser bei dem höchstgelegenen Querprofil bei Station 0 + 620 m aufteilt, wurden zwei separate Niederschlags-Abfluss Modelle berechnet. Als Gebietsgrenze wurden die Böschungsoberkanten bzw. die Oberkanten der Gabionen verwendet. Die Gebietsgrenze im Nord-Westen wurde über das Ende des Kreisverkehres [Station 0 + 160 m] definiert. Die Gebietsgrenze im Süd-Osten endet topographisch bedingt im Wassergraben Obere Bära.

2.1 Einzugsgebiete

Eine Übersicht über die Einzugsgebiete ist in Anlage 3 dargestellt.

Tabelle 1: Einzugsgebiete für Niederschlags-Abfluss Modell

Bezeichnung Einzugsgebiet	Einzugsge- bietsfläche [km²]	Anfangs- verlust [mm]	Abflussbei- wert [-]	Basisabfluss Anfang [m³/s]	Basisabfluss Ende [m³/s]
EZG-West	0,117	2,26	0,09	0,00	0,00
EZG-Ost	0,183	3,29	0,076	0,00	0,00

Die Einzugsgebiete sind in Tabelle 1 zusammengefasst. Der Abflussbeiwert ändert sich bei jeder Berechnung [abhängig vom Regenereignis] und ist deshalb nur als Anhaltspunkt anzusehen. Die unterschiedlichen Abflussbeiwerte sind aus dem LUNA-Bericht [vgl. Anlage 4] zu entnehmen.

2.2 Landnutzung

Tabelle 2: Aufteilung der Landnutzung im EZG-West

	EZG-West	
Landnutzung	Flächenanteil	Fläche [ha]
Äcker	41%	4,8
Wald	59%	6,8
EZG Gesamt	100%	11,6

Tabelle 3: Aufteilung der Landnutzung im EZG-Ost

	EZG-Ost	
Landnutzung	Flächenanteil	Fläche [ha]
Äcker	44%	8,1
Wald	56%	10,2
EZG Gesamt	100%	18,3

2.3 Wasserdurchlässigkeit im Boden

Die Wasserdurchlässigkeit wurde aus den Bodenkarten vom Landesamt für Geologie, Rohstoffe und Bergbau entnommen [vgl. Anlage 2].

Tabelle 4: Wasserdurchlässigkeit EZG-West

	EZG-West	
Landnutzung	Flächenanteil	Fläche [ha]
gering	97%	11,3
gering mittel	0%	0,0
hoch	3%	0,3
EZG Gesamt	100%	11,6

Tabelle 5: Wasserdurchlässigkeit EZG-Ost

	EZG-Ost	
Landnutzung	Flächenanteil	Fläche [ha]
gering	75%	13,7
mittel	5%	0,9
hoch	20%	3,6
EZG Gesamt	100%	18,2

2.4 Geländeneigung

Aus der topographischen Karte wurden exemplarisch folgende Geländeneigungen entnommen:

Einzugsgebiet EZG-Ost:

EZG-Ost Hochpunkt: 963 müNN
EZG-Ost Tiefpunkt: 793 müNN
EZG-Ost Höhendifferenz: 170 m
Länge: 800 m

Gefälle: 21,25 %

Einzugsgebiet EZG-West:

EZG-West Hochpunkt: 963 müNN
EZG-West Tiefpunkt: 798 müNN
EZG-West Höhendifferenz: 165 m
Länge: 655 m
Gefälle: 25,19 %

Angesetzt wurde demnach ein gewogenes Gefälle von 21,25 % bzw. 25,19 %.

2.5 Bemessungsniederschlag

Für das Niederschlag-Abfluss Modell wurden die Regenspenden für das maßgebliche Rasterfeld Spalte 25, Zeile 92 dem KOSTRA-DWD 2010 [koordinierte Starkniederschlags-Regionalisierungs-Auswertung] entnommen [vgl. Anhang 1].

Aus der Empfehlung von KLIWA [Kooperationsvorhaben "Klimaveränderung und Konsequenzen für die Wasserwirtschaft" der Länder Baden-Württemberg und Bayern sowie des Deutsche Wetterdienstes] und LUBW [Landesanstalt für Umwelt, Messungen und Naturschutz Baden-Württemberg] kann entnommen werden, dass sich Meßstetten-Tieringen in der Zone 5 für die Auswahl der Klimafaktoren befindet [vgl. Abbildung 1].

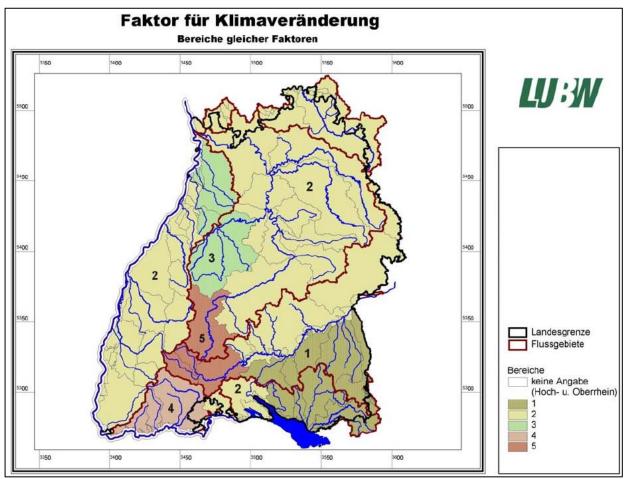


Abbildung 1: Regionen in Baden-Württemberg mit einheitlichen Klimaänderungsfaktoren

Für die Bemessungsniederschläge wurden die entsprechenden Klimafaktoren der Empfehlung von KLIWA und LUBW angesetzt [vgl. Tabelle 6].

Tabelle 6: Regionale Klimaänderungsfaktoren für unterschiedlich Regenereignisse [Quelle: Der Klimawandel in Baden-Württemberg, KLIWA/LUBW]

т		Klimaäno	lerungsfal	ktoren fτ,κ		
[Jahre]	1 2 3		4	5		
2	1,25	1,50	1,75	1,50	1,75	
5	1,24	1,45	1,65	1,45	1,67	
10	1,23	1,40	1,55	1,43	1,60	
20	1,21	1,33	1,33 1,42		1,50	
50	1,18	1,23	1,25	1,31	1,35	
100	1,15	1,15 1,15 1,15			1,25	
200	1,12	1,08	1,07	1,18	1,15	
500	1,06	1,03	1,00	1,08	1,05	
1000	1,00	1,00	1,00	1,00 1,00		
Bemerkung:	Für Jährlic	hkeiten T > 10	00 a ist der Fa	ktor gleich 1,0		

Es wurden unterschiedliche Modellregen jeweils für T=2 Jahre, T=5 Jahre, T=10 Jahre, T=20 Jahre, vom Euler Typ 2 aufgestellt. Die Richtlinien für die Anlage von Straßen – Teil: Entwässerung [kurz RAS-Ew] schreiben vor, dass der zugrunde zulegende Bemessungsniederschlag durch das gewünschte Maß an Sicherheit gegen Überschreitung bestimmt wird. Im vorliegenden Fall wird in Anlehnung an die RAS-Ew, "Straßentiefpunkte" eine Regenhäufigkeit von n=0,2 [T=5 Jahre] empfohlen.

3 Ergebnisse des Niederschlags-Abfluss / Flussgebietsmodell

Tabelle 7: Zusammenfassung der Abflusswerte aus LUNA [Rehm Software]

Hochwasser	T = 2	T = 5	T = 10	T = 20
Klimafaktor	1,75	1,67	1,60	1,50
Einheit	[m³/s]	[m³/s]	[m³/s]	[m³/s]
EZG-West	0,13	0,32	0,48	0,61
EZG-Ost	0,15	0,38	0,56	0,71

Der in Tabelle 7 aufgeführte Wasseranfall ist für die unterschiedlichen Jährlichkeiten jeweils am Tiefpunkt [Station 0 + 160 m bzw. 1 + 080 m] berechnet worden und nimmt stetig bis zum Scheitelpunkt [Station 0 + 620 m] ab.

4 Hinweise zur Verwendung / Einordnung der Daten

Oben genannte Abflüsse wurden ermittelt mit entsprechendem Klimaänderungsfaktor. Aufgrund der Herkunft des Oberflächenabflusses aus einem Waldgebiet können auf dem Fließweg vorübergehende Hindernisse (z.B. Aufstau der Gräben durch Laubansammlung) auftreten. Werden derartige Hindernisse überspült und infolge dessen abgetragen, so können kurzfristig deutlich höhere Abflussspitzen entstehen.

Weiterhin ist aufgrund des unvermeidlichen Eintrags von Blättern und Holz sowie Erdmaterial und Steinen mit einer teilweisen Verlegung von Rohrdurchlässen und Gräben bei Eintritt des maßgeblichen Niederschlagsereignisses zu rechnen, worauf diese Anlagen zur Niederschlagswasserableitung ausgelegt werden müssen.

5 Anlagen

- Anlage 1: Bemessungsregen gem. KOSTRA-DWD 2010.
- Anlage 2: Bodenkarte, Landesamt für Geologie, Rohrstoffe und Bergbau 2016
- Anlage 3: Lageplan Einzugsgebiete, ISW vom 15.12.2016,
- Anlage 4: Berechnungsergebnisse Programm LUNA, erstellt durch ISW am 15.12.2016

Aufgestellt: Neustetten, im Oktober 2016

Ran

ISW, Ingenieurberatung für Siedlungswasserwirtschaft 72149 Neustetten - Remmingsheim

KOSTRA-DWD 2010

Deutscher Wetterdienst - Hydrometeorologie -

Niederschlagshöhen und -spenden nach KOSTRA-DWD 2010

Rasterfeld : Spalte 25, Zeile 92 Ortsname : Obernheim (BW)

Bemerkung

Zeitspanne : Januar - Dezember

Dauerstufe							Wie	ederkehri	ntervall T	[a]						
	1 2		5		10		20		30		50		100			
	hN	rN	hN	rN	hN	rN	hN	rN	hN	rN	hN	rN	hN	rN	hN	rN
5 min	5,8	192,1	8,2	273,2	11,4	380,4	13,8	461,6	16,3	542,7	17,7	590,2	19,5	650,0	21,9	731,1
10 min	9,1	151,4	12,1	201,8	16,1	268,3	19,1	318,6	22,1	368,9	23,9	398,3	26,1	435,4	29,1	485,7
15 min	11,2	125,0	14,7	163,0	19,2	213,3	22,6	251,4	26,0	289,4	28,1	311,7	30,6	339,7	34,0	377,8
20 min	12,8	106,4	16,5	137,6	21,5	178,9	25,2	210,1	29,0	241,3	31,1	259,5	33,9	282,5	37,6	313,7
30 min	14,8	82,0	19,0	105,6	24,6	136,8	28,9	160,4	33,1	184,0	35,6	197,8	38,7	215,2	43,0	238,8
45 min	16,5	61,0	21,3	78,9	27,7	102,5	32,5	120,3	37,3	138,2	40,1	148,6	43,7	161,7	48,5	179,6
60 min	17,5	48,6	22,8	63,2	29,7	82,6	35,0	97,2	40,3	111,9	43,3	120,4	47,2	131,2	52,5	145,8
90 min	19,9	36,8	25,4	47,0	32,7	60,5	38,2	70,8	43,8	81,0	47,0	87,0	51,1	94,6	56,6	104,8
2 h	21,7	30,2	27,4	38,1	35,0	48,6	40,7	56,6	46,4	64,5	49,8	69,2	54,0	75,0	59,7	83,0
3 h	24,7	22,8	30,7	28,4	38,6	35,7	44,6	41,3	50,6	46,8	54,1	50,1	58,5	54,2	64,5	59,7
4 h	27,0	18,7	33,2	23,0	41,4	28,7	47,6	33,1	53,8	37,4	57,4	39,9	62,0	43,1	68,2	47,4
6 h	30,6	14,2	37,1	17,2	45,7	21,2	52,3	24,2	58,8	27,2	62,6	29,0	67,4	31,2	73,9	34,2
9 h	34,7	10,7	41,6	12,8	50,6	15,6	57,4	17,7	64,3	19,8	68,3	21,1	73,3	22,6	80,2	24,7
12 h	38,0	8,8	45,1	10,4	54,4	12,6	61,5	14,2	68,6	15,9	72,7	16,8	77,9	18,0	85,0	19,7
18 h	42,9	6,6	50,6	7,8	60,8	9,4	68,4	10,6	76,1	11,7	80,6	12,4	86,3	13,3	94,0	14,5
24 h	46,8	5,4	54,9	6,4	65,6	7,6	73,8	8,5	81,9	9,5	86,6	10,0	92,6	10,7	100,7	11,7
48 h	57,6	3,3	66,7	3,9	78,9	4,6	88,0	5,1	97,2	5,6	102,6	5,9	109,3	6,3	118,5	6,9
72 h	65,0	2,5	74,8	2,9	87,7	3,4	97,5	3,8	107,3	4,1	113,0	4,4	120,2	4,6	130,0	5,0

Legende

Τ Wiederkehrintervall, Jährlichkeit in [a]: mittlere Zeitspanne, in der ein Ereignis einen Wert einmal erreicht oder

überschreitet

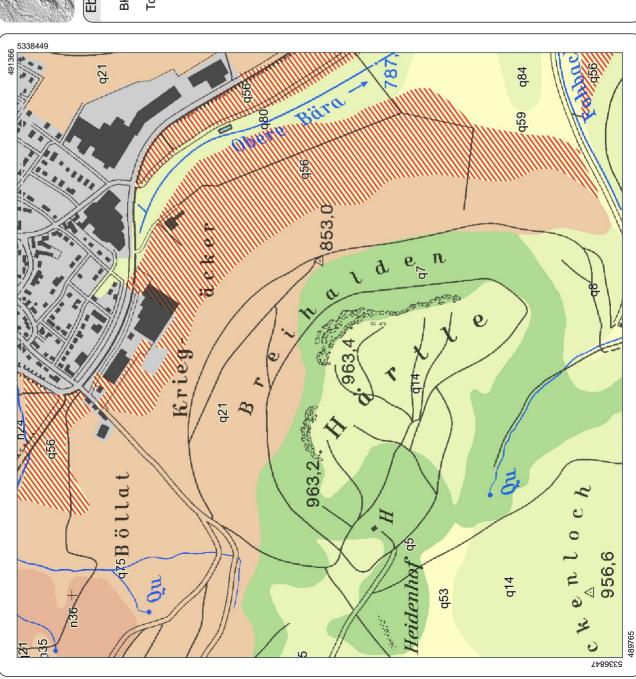
D Dauerstufe in [min, h]: definierte Niederschlagsdauer einschließlich Unterbrechungen

hN Niederschlagshöhe in [mm] rΝ Niederschlagsspende in [l/(s·ha)]

Für die Berechnung wurden folgende Klassenwerte verwendet:

Wiederkehrintervall	Klassenwerte	Dauerstufe						
vviederkeriiritervali	Klasseriwerte	15 min	60 min	12 h	72 h			
1.0	Faktor [-]	0,50	0,50	0,50	0,50			
1 a	hN [mm]	11,25	17,50	38,00	65,00			
100 -	Faktor [-]	0,50	0,50	0,50	0,50			
100 a	hN [mm]	34,00	52,50	85,00	130,00			

Wenn die angegebenen Werte für Planungszwecke herangezogen werden, sollte für rN(D;T) bzw. hN(D;T) in Abhängigkeit vom Wiederkehrintervall


ein Toleranzbetrag von ±10 %, ein Toleranzbetrag von ±15 %, ein Toleranzbetrag von ±20 % bei 1 a \leq T \leq 5 a bei 5 a < T \leq 50 a bei 50 a < T \leq 100 a

Berücksichtigung finden.

LANDESAMT FÜR GEOLOGIE, ROHSTOFFE UND BERGBAU

Geoportal Kartenausdruck

Maßstab

1:10000

Ebenen

BK50: Wasserdurchlässigkeit

Topographie (Rasterdaten des LGL)

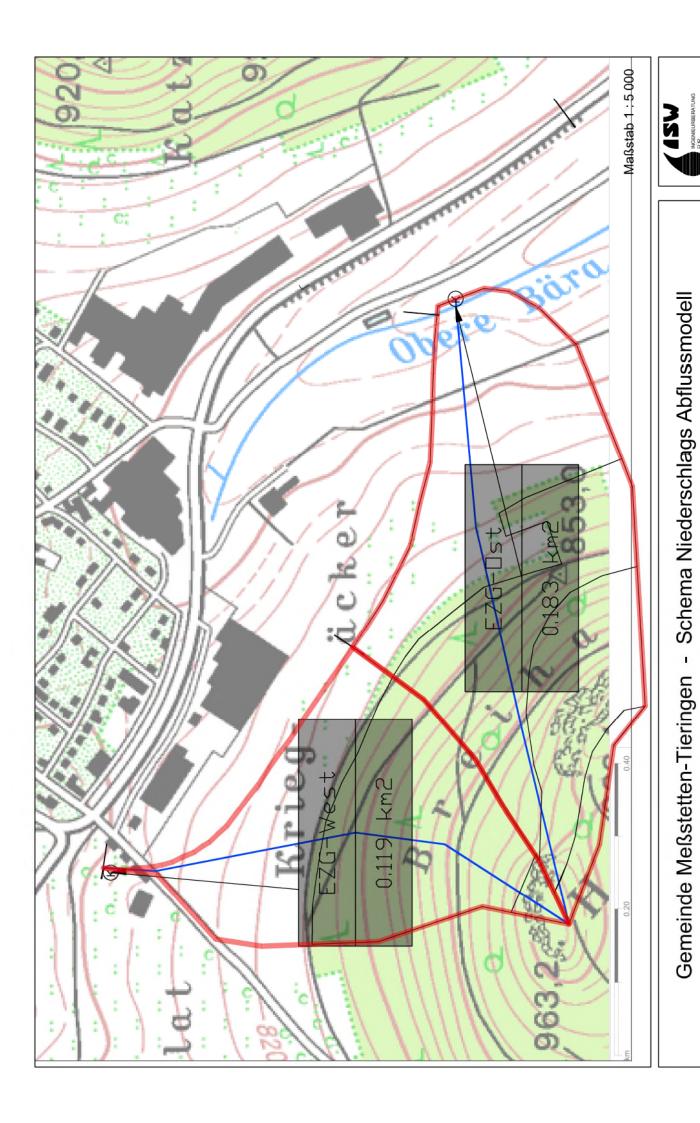
© Landesamt für Geologie, Rohstoffe und Bergbau, Ausdruck vom:15.Dec.16 Baden-Württemberg REGIERUNGSPRÄSIDIUM FREIBURG

LANDESAMT FÜR GEOLOGIE, ROHSTOFFE UND BERGBAU

Geoportal Kartenausdruck

Legende

BK50: Wasserdurchlässigkeit


GeoLa Boden: Wasserdurchlaessigkeit

- sehr gering bis gering
- sehr gering
- gering bis mittel, im Unterboden sehr gering
- gering bis mittel, im Unterboden sehr gering bis gering
- gering bis mittel, im Unterboden gering
- gering bis mittel
- gering bis mittel, im Unterboden mittel
- gering bis mittel, im Unterboden mittel bis hoch
- gering bis mittel, im Unterboden hoch bis sehr hoch
- gering bis mittel, im Unterboden sehr hoch
- gering bis mittel, im Unterboden sehr hoch bis äusserst hoch
- gering, im Unterboden sehr gering
- gering, im Unterboden sehr gering bis gering
- gering
- gering, im Unterboden mittel
- gering, im Unterboden mittel bis hoch
- gering, im Unterboden hoch
- gering, im Unterboden hoch bis sehr hoch
- mittel bis hoch, im Unterboden sehr gering
- mittel bis hoch, im Unterboden sehr gering bis gering
- mittel bis hoch, im Unterboden gering
- mittel bis hoch, im Unterboden gering bis mittel
- mittel bis hoch, im Unterboden mittel
- mittel bis hoch
- mittel bis hoch, im Unterboden hoch

- mittel bis hoch, im Unterboden sehr hoch
- mittel bis hoch, im Unterboden sehr hoch bis äusserst hoch
- mittel bis hoch, im Unterboden äusserst hoch
- mittel, im Unterboden sehr gering
- mittel, im Unterboden sehr gering bis gering
- mittel, im Unterboden gering
- mittel, im Unterboden gering bis mittel
- mittel
- mittel, im Unterboden mittel bis hoch
- mittel, im Unterboden hoch
- mittel, im Unterboden hoch bis sehr hoch
- mittel, im Unterboden sehr hoch
- mittel, im Unterboden sehr hoch bis äusserst hoch
- mittel, im Unterboden äusserst hoch
- hoch bis sehr hoch, im Unterboden gering bis mittel
- hoch bis sehr hoch, im Unterboden mittel bis hoch
- hoch bis sehr hoch
- hoch bis sehr hoch, im Unterboden sehr hoch
- boch, im Unterboden sehr gering
- boch, im Unterboden sehr gering bis gering
- hoch, im Unterboden gering
- hoch, im Unterboden gering bis mittel
- In Unterboden mittel
- hoch, im Unterboden mittel bis hoch
- hoch
- whoch, im Unterboden hoch bis sehr hoch
- hoch, im Unterboden sehr hoch

Baden-Württemberg REGIERUNGSPRÄSIDIUM FREIBURG

PROGRAMM REHM / LUNA 3.2

ISW Dipl.-Ing. FH Günther Eisele * 72149 Neustetten-Remmingsheim

Projekt: Projekt: Abflussberechnung Wassergräben L440

Bauherr: Prof. Dr.-Ing. E. Vees u. Partner GmbH

Stadt/Gemeinde: Meßstetten-Tieringen

Grunddaten: EZG-Ost

Einzugsgebietsfläche: 0,183 [km²]

Anfangsverlust: 3,29 [mm] Basisabfluss Beginn: 0,000 [m³/s] Gesamtabflussbeiwert: 0,033 [-] mit LUTZ-Verfahren Basisabfluss Ende: 0,000 [m³/s]

Datum: 15.12.2016

Niederschlagsverteilung: Niederschlagsordinaten

Regendauer: 1,000 [h]
Regenhöhe: 60,201 [mm]

Berechnungsverfahren: 3-Verfahren nach Lutz

Gebietsparameter:

Bebauungsanteil: 0,00 [%]

Landflächen:

Endabflussbeiwert: 0,592 [-] Anfangsverlust: 3,29 [mm]

Stadtflächen

Bebauungsanteil U 0,00 [%] Anfangsverlust AVS: 0,00 [mm]

versiegelt:

Abflussbeiwert: 0,000 [-]

Ereignisparameter

C1: 0,020 C2: 3,000 C3: 2,000 C4: 0,000

Ereignisdaten

Basisabfluss: 1,000 [(l/s)/km²] Monat: April

Niederschlagsdauer: 1,000 [h]

Berechnungsverfahren: 0-Regionalisierung nach LUTZ (normiert)

Gebietsfaktor P1: 0.250

 Länge L:
 0,800 [km]
 Länge LC:
 0,400 [km]

 Bebauungsanteil U:
 0,00 [%]
 Waldanteil W:
 56,00 [%]

 gewogenes Gefälle Ig:
 21,2500 [%]
 Monat:
 April

Mit normierter Einheitsganglinie nach Lutz

Datum: 15.12.2016

ISW Dipl.-Ing. FH Günther Eisele * 72149 Neustetten-Remmingsheim

Projekt: Abflussberechnung Wassergräben L440 Projekt:

Bauherr: Prof. Dr.-Ing. E. Vees u. Partner GmbH Stadt/Gemeinde: Meßstetten-Tieringen

Einheits- und Abflussganglinie

Ergebnis: EZG-Ost / Regen: T2_175

Einheitsganglinie: Abflussganglinie: Zeitpunkt: 00:15 [h] Zeitpunkt: 00:30 [h] Umax= 0,196 [1/dt] 0,153 [m³/s] Qmax=

Abflussvolumen: V= 370 $[m^3]$ Basisabfluss: 0,000 [m³/s] Beginn:

Ende: 0,000 [m³/s] zeitl. Verlauf Abflussbeiwert: 3-Verfahren nach Lutz Einheitsganglinie: 0-Regionalisierung nach

LUTZ (normiert)

Zeit	U	hN	hNeff	QD	QG	Zeit	U	hN	hNeff	QD	QG
(h)	(1/dt)	(mm/dt)	(mm/dt)	(m ³ /s)	(m³/s)	(h)	(1/dt)	(mm/dt)	(mm/dt)	(m³/s)	(m³/s)
00:00	0,0000	4,50		0,000	0,000	01:15	0,0085			0,043	0,043
00:05	0,0459	6,00	0,03	0,000	0,000	01:20	0,0058			0,031	0,031
00:10	0,1275	9,10	0,14	0,001	0,001	01:25	0,0017			0,022	0,022
00:15	0,1957	24,00	0,85	0,008	0,008	01:30	0,0000			0,015	0,015
00:20	0,1723	3,10	0,16	0,047	0,047	01:35	0,0000			0,010	0,010
00:25	0,1236	3,10	0,17	0,112	0,112	01:40	0,0000			0,007	0,007
00:30	0,0857	2,07	0,12	0,153	0,153	01:45	0,0000			0,005	0,005
00:35	0,0602	2,07	0,13	0,142	0,142	01:50	0,0000			0,003	0,003
00:40	0,0461	2,07	0,13	0,121	0,121	01:55	0,0000			0,002	0,002
00:45	0,0343	1,40	0,09	0,106	0,106	02:00	0,0000			0,001	0,001
00:50	0,0270	1,40	0,09	0,097	0,097	02:05	0,0000			0,001	0,001
00:55	0,0217	1,40	0,10	0,088	0,088	02:10	0,0000			0,000	0,000
01:00	0,0185			0,080	0,080	02:15	0,0000			0,000	0,000
01:05	0,0143			0,072	0,072	02:20	0,0000			0,000	0,000
01:10	0,0113			0,059	0,059						

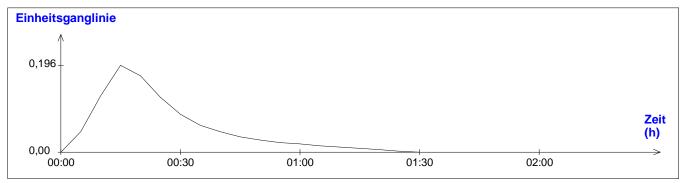
Projekt: Abflussberechnung Wassergräben L440 Bauherr: Prof. Dr.-Ing. E. Vees u. Partner GmbH

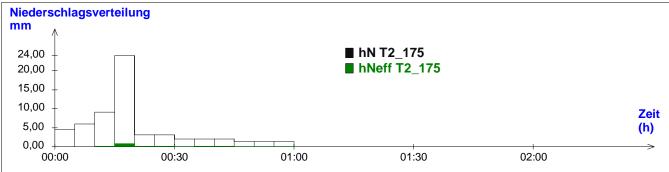
Stadt/Gemeinde: Meßstetten-Tieringen

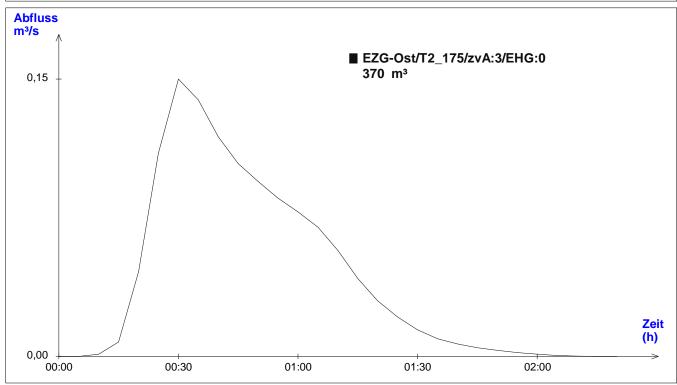
Ergebnis: EZG-Ost / Regen: T2_175

Einheitsganglinie: Umax= 0,196 [1/dt]Abflussganglinie: Qmax= $0,153 [m^3/s]$ Abflussvolumen: V= $370 [m^3]$

Basisabfluss: Beginn: 0,000 [m³/s]


zeitl. Verlauf Abflussbeiwert: 3-Verfahren nach Lutz


Zeitpunkt: 00:15 [h] Zeitpunkt: 00:30 [h]


Ende: 0,000 [m³/s]

Einheitsganglinie: 0-Regionalisierung nach

LUTZ (normiert)

Projekt: Projekt: Abflussberechnung Wassergräben L440

Bauherr: Prof. Dr.-Ing. E. Vees u. Partner GmbH

Stadt/Gemeinde: Meßstetten-Tieringen

Grunddaten: EZG-Ost

Einzugsgebietsfläche: 0,183 [km²]

Anfangsverlust: 3,29 [mm] Basisabfluss Beginn: 0,000 [m 3 /s] Gesamtabflussbeiwert: 0,054 [-] mit LUTZ-Verfahren Basisabfluss Ende: 0,000 [m 3 /s]

Datum: 15.12.2016

Niederschlag: T5_167

Niederschlagsverteilung: Niederschlagsordinaten

Regendauer: 1,000 [h] Regenhöhe: 94,896 [mm]

Zeitlicher Verlauf Abflussbeiwert

Berechnungsverfahren: 3-Verfahren nach Lutz

Gebietsparameter:

Bebauungsanteil: 0,00 [%]

Landflächen:

Endabflussbeiwert: 0,592 [-] Anfangsverlust: 3,29 [mm]

Stadtflächen

Bebauungsanteil U 0,00 [%] Anfangsverlust AVS: 0,00 [mm]

versiegelt:

Abflussbeiwert: 0,000 [-]

Ereignisparameter

C1: 0,020 C2: 3,000 C3: 2,000 C4: 0,000

Ereignisdaten

Basisabfluss: 1,000 [(l/s)/km²] Monat: April

Niederschlagsdauer: 1,000 [h]

Einheitsganglinie

Berechnungsverfahren: 0-Regionalisierung nach LUTZ (normiert)

Gebietsfaktor P1: 0,250

 Länge L:
 0,800 [km]
 Länge LC:
 0,400 [km]

 Bebauungsanteil U:
 0,00 [%]
 Waldanteil W:
 56,00 [%]

 gewogenes Gefälle Ig:
 21,2500 [%]
 Monat:
 April

Mit normierter Einheitsganglinie nach Lutz

<u>Berechnungsparameter</u>

Datum: 15.12.2016

ISW Dipl.-Ing. FH Günther Eisele * 72149 Neustetten-Remmingsheim

Projekt: Abflussberechnung Wassergräben L440 Projekt: Bauherr: Prof. Dr.-Ing. E. Vees u. Partner GmbH

Stadt/Gemeinde: Meßstetten-Tieringen

Einheits- und Abflussganglinie

Ergebnis: EZG-Ost / Regen: T5_167

Einheitsganglinie: Abflussganglinie: Zeitpunkt: 00:15 [h] Zeitpunkt: 00:30 [h] Umax= 0,196 [1/dt] 0,382 [m³/s] Qmax=

Abflussvolumen: V= 930 $[m^3]$ Basisabfluss: 0,000 [m³/s] Beginn: Ende: 0,000 [m³/s]

zeitl. Verlauf Abflussbeiwert: 3-Verfahren nach Lutz Einheitsganglinie: 0-Regionalisierung nach

LUTZ (normiert)

Zeit	U	hN	hNeff	QD	QG	Zeit	U	hN	hNeff	QD	QG
(h)	(1/dt)	(mm/dt)	(mm/dt)	(m ³ /s)	(m ³ /s)	(h)	(1/dt)	(mm/dt)	(mm/dt)	(m³/s)	(m³/s)
00:00	0,0000	6,40	0,01	0,000	0,000	01:15	0,0085			0,113	0,113
00:05	0,0459	8,70	0,08	0,000	0,000	01:20	0,0058			0,081	0,081
00:10	0,1275	12,70	0,29	0,003	0,003	01:25	0,0017			0,058	0,058
00:15	0,1957	40,50	2,23	0,018	0,018	01:30	0,0000			0,040	0,040
00:20	0,1723	4,75	0,38	0,112	0,112	01:35	0,0000			0,026	0,026
00:25	0,1236	4,75	0,41	0,275	0,275	01:40	0,0000			0,019	0,019
00:30	0,0857	3,30	0,30	0,382	0,382	01:45	0,0000			0,013	0,013
00:35	0,0602	3,30	0,31	0,357	0,357	01:50	0,0000			0,009	0,009
00:40	0,0461	3,30	0,32	0,305	0,305	01:55	0,0000			0,006	0,006
00:45	0,0343	2,40	0,24	0,267	0,267	02:00	0,0000			0,004	0,004
00:50	0,0270	2,40	0,25	0,242	0,242	02:05	0,0000			0,002	0,002
00:55	0,0217	2,40	0,25	0,221	0,221	02:10	0,0000			0,001	0,001
01:00	0,0185			0,203	0,203	02:15	0,0000			0,000	0,000
01:05	0,0143			0,184	0,184	02:20	0,0000			0,000	0,000
01:10	0,0113			0,153	0,153						

Projekt: Projekt: Abflussberechnung Wassergräben L440 Bauherr: Prof. Dr.-Ing. E. Vees u. Partner GmbH

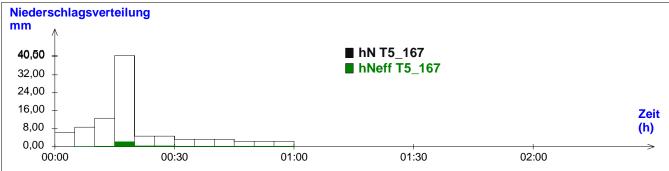
Stadt/Gemeinde: Meßstetten-Tieringen

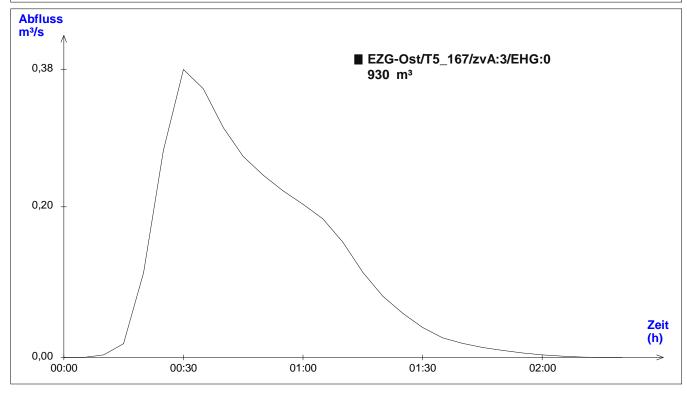
Einheits- und Abflussganglinie

Ergebnis: EZG-Ost / Regen: T5_167

Einheitsganglinie: Abflussganglinie: Umax= 0,196 [1/dt] Qmax= 0,382 [m3/s] Abflussvolumen: V= 930 $[m^3]$

Basisabfluss: Beginn: 0,000 [m³/s]


Ende: 0,000 [m³/s] zeitl. Verlauf Abflussbeiwert: 3-Verfahren nach Lutz Einheitsganglinie: 0-Regionalisierung nach


LUTZ (normiert)

Zeitpunkt: 00:15 [h]

Zeitpunkt: 00:30 [h]

Projekt: Projekt: Abflussberechnung Wassergräben L440

Bauherr: Prof. Dr.-Ing. E. Vees u. Partner GmbH

Stadt/Gemeinde: Meßstetten-Tieringen

<u>Grunddaten:</u> EZG-Ost

Einzugsgebietsfläche: 0,183 [km²]

Anfangsverlust: 3,29 [mm] Basisabfluss Beginn: 0,000 [m³/s] Gesamtabflussbeiwert: 0,066 [-] mit LUTZ-Verfahren Basisabfluss Ende: 0,000 [m³/s]

Datum: 15.12.2016

Niederschlag: T10_160

Niederschlagsverteilung: Niederschlagsordinaten

Regendauer: 1,000 [h] Regenhöhe: 117,999 [mm]

Zeitlicher Verlauf Abflussbeiwert

Berechnungsverfahren: 3-Verfahren nach Lutz

Gebietsparameter:

Bebauungsanteil: 0,00 [%]

Landflächen:

Endabflussbeiwert: 0,592 [-] Anfangsverlust: 3,29 [mm]

Stadtflächen

Bebauungsanteil U 0,00 [%] Anfangsverlust AVS: 0,00 [mm]

versiegelt:

Abflussbeiwert: 0,000 [-]

Ereignisparameter

C1: 0,020 C2: 3,000 C3: 2,000 C4: 0,000

Ereignisdaten

Basisabfluss: 1,000 [(l/s)/km²] Monat: April

Niederschlagsdauer: 1,000 [h]

Einheitsganglinie

Berechnungsverfahren: 0-Regionalisierung nach LUTZ (normiert)

Gebietsfaktor P1: 0,250

 Länge L:
 0,800 [km]
 Länge LC:
 0,400 [km]

 Bebauungsanteil U:
 0,00 [%]
 Waldanteil W:
 56,00 [%]

 gewogenes Gefälle Ig:
 21,2500 [%]
 Monat:
 April

Mit normierter Einheitsganglinie nach Lutz

<u>Berechnungsparameter</u>

ISW Dipl.-Ing. FH Günther Eisele * 72149 Neustetten-Remmingsheim Projekt: Projekt: Abflussberechnung Wassergräben L440

Bauherr: Prof. Dr.-Ing. E. Vees u. Partner GmbH

Stadt/Gemeinde: Meßstetten-Tieringen

Einheits- und Abflussganglinie

Ergebnis: EZG-Ost / Regen: T10_160

Einheitsganglinie: Umax= 0,196 [1/dt] Zeitpunkt: 00:15 [h] Abflussganglinie: Qmax= 0,556 [m³/s] Zeitpunkt: 00:30 [h]

Abflussvolumen: V= 1 430 [m³]
Basisabfluss: Beginn: 0,000 [m³/s]

Basisabfluss: Beginn: 0,000 [m³/s] Ende: 0,000 [m³/s] zeitl.Verlauf Abflussbeiwert: 3-Verfahren nach Lutz Einheitsganglinie: 0-Regionalisierung nach

LUTZ (normiert)

Zeit	U	hN	hNeff	QD	QG	Zeit	U	hN	hNeff	QD	QG
(h)	(1/dt)	(mm/dt)	(mm/dt)	(m^3/s)	(m³/s)	(h)	(1/dt)	(mm/dt)	(mm/dt)	(m³/s)	(m³/s)
00:00	0,0000	7,80	0,01	0,000	0,000	01:15	0,0085			0,186	0,186
00:05	0,0459	10,30	0,13	0,000	0,000	01:20	0,0058			0,137	0,137
00:10	0,1275	15,30	0,43	0,005	0,005	01:25	0,0017			0,102	0,102
00:15	0,1957	51,40	3,48	0,025	0,025	01:30	0,0000			0,075	0,075
00:20	0,1723	5,85	0,58	0,157	0,157	01:35	0,0000			0,052	0,052
00:25	0,1236	5,85	0,62	0,380	0,380	01:40	0,0000			0,034	0,034
00:30	0,0857	4,10	0,46	0,556	0,556	01:45	0,0000			0,025	0,025
00:35	0,0602	4,10	0,47	0,547	0,547	01:50	0,0000			0,018	0,018
00:40	0,0461	4,10	0,49	0,470	0,470	01:55	0,0000			0,013	0,013
00:45	0,0343	3,07	0,38	0,412	0,412	02:00	0,0000			0,008	0,008
00:50	0,0270	3,07	0,39	0,372	0,372	02:05	0,0000			0,005	0,005
00:55	0,0217	3,07	0,40	0,345	0,345	02:10	0,0000			0,002	0,002
01:00	0,0185			0,315	0,315	02:15	0,0000			0,001	0,001
01:05	0,0143			0,287	0,287	02:20	0,0000			0,000	0,000
01:10	0,0113			0,244	0,244	02:25	0,0000			0,000	0,000

Projekt: Abflussberechnung Wassergräben L440 Bauherr: Prof. Dr.-Ing. E. Vees u. Partner GmbH

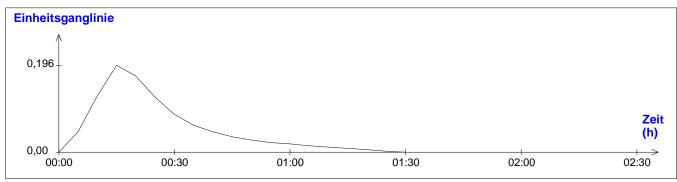
Stadt/Gemeinde: Meßstetten-Tieringen

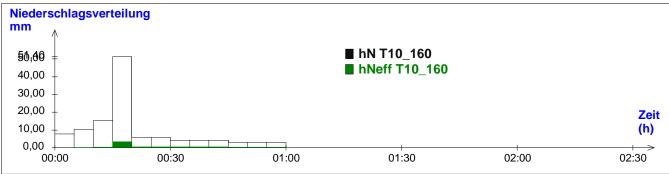
Einheits- und Abflussganglinie

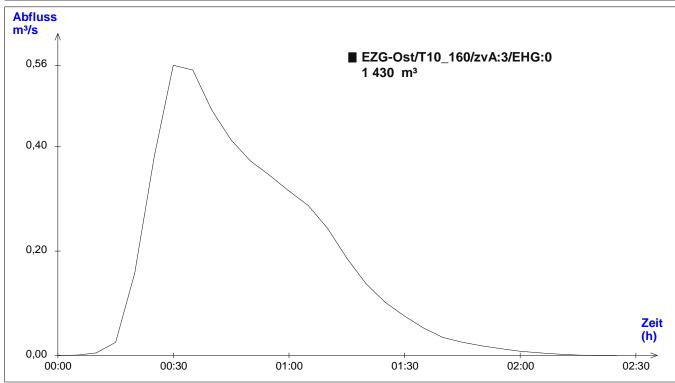
Ergebnis: EZG-Ost / Regen: T10_160

Basisabfluss: Beginn: 0,000 [m³/s]

zeitl. Verlauf Abflussbeiwert: 3-Verfahren nach Lutz Einhe


Ende: 0,000 [m³/s]


Zeitpunkt: 00:15 [h]


Zeitpunkt: 00:30 [h]

Einheitsganglinie: 0-Regionalisierung nach

LUTZ (normiert)

Projekt: Projekt: Abflussberechnung Wassergräben L440

Bauherr: Prof. Dr.-Ing. E. Vees u. Partner GmbH

Stadt/Gemeinde: Meßstetten-Tieringen

Grunddaten: EZG-Ost

Einzugsgebietsfläche: 0,183 [km²]

Anfangsverlust: 3,29 [mm] Basisabfluss Beginn: 0,000 [m³/s] Gesamtabflussbeiwert: 0,076 [-] mit LUTZ-Verfahren Basisabfluss Ende: 0,000 [m³/s]

Datum: 15.12.2016

Niederschlag: T20_150

Niederschlagsverteilung: Niederschlagsordinaten

Regendauer: 1,000 [h] Regenhöhe: 136,005 [mm]

Zeitlicher Verlauf Abflussbeiwert

Berechnungsverfahren: 3-Verfahren nach Lutz

Gebietsparameter:

Bebauungsanteil: 0,00 [%]

Landflächen:

Endabflussbeiwert: 0,592 [-] Anfangsverlust: 3,29 [mm]

Stadtflächen

Bebauungsanteil U 0,00 [%] Anfangsverlust AVS: 0,00 [mm]

versiegelt:

Abflussbeiwert: 0,000 [-]

Ereignisparameter

C1: 0,020 C2: 3,000 C3: 2,000 C4: 0,000

Ereignisdaten

Basisabfluss: 1,000 [(l/s)/km²] Monat: April

Niederschlagsdauer: 1,000 [h]

Einheitsganglinie

Berechnungsverfahren: 0-Regionalisierung nach LUTZ (normiert)

Gebietsfaktor P1: 0,250

 Länge L:
 0,800 [km]
 Länge LC:
 0,400 [km]

 Bebauungsanteil U:
 0,00 [%]
 Waldanteil W:
 56,00 [%]

 gewogenes Gefälle Ig:
 21,2500 [%]
 Monat:
 April

Mit normierter Einheitsganglinie nach Lutz

<u>Berechnungsparameter</u>

Datum: 15.12.2016

ISW Dipl.-Ing. FH Günther Eisele * 72149 Neustetten-Remmingsheim

Projekt: Abflussberechnung Wassergräben L440 Projekt:

Bauherr: Prof. Dr.-Ing. E. Vees u. Partner GmbH Stadt/Gemeinde: Meßstetten-Tieringen

Einheits- und Abflussganglinie

Ergebnis: EZG-Ost / Regen: T20_150

Einheitsganglinie: Abflussganglinie: Zeitpunkt: 00:15 [h] Zeitpunkt: 00:35 [h] Umax= 0,196 [1/dt] 0,708 [m³/s] Qmax= Abflussvolumen: 1 900 V= $[m^3]$

Basisabfluss: 0,000 [m³/s] Beginn: Ende: 0,000 [m³/s]

zeitl. Verlauf Abflussbeiwert: 3-Verfahren nach Lutz Einheitsganglinie: 0-Regionalisierung nach

LUTZ (normiert)

Zeit	U	hN	hNeff	QD	QG	Zeit	U	hN	hNeff	QD	QG
(h)	(1/dt)	(mm/dt)	(mm/dt)	(m^3/s)	(m³/s)	(h)	(1/dt)	(mm/dt)	(mm/dt)	(m³/s)	(m³/s)
00:00	0,0000	8,90	0,02	0,000	0,000	01:40	0,0000			0,055	0,055
00:05	0,0459	11,60	0,17	0,001	0,001	01:45	0,0000			0,038	0,038
00:10	0,1275	17,10	0,55	0,006	0,006	01:50	0,0000			0,028	0,028
00:15	0,1957	60,10	4,64	0,031	0,031	01:55	0,0000			0,020	0,020
00:20	0,1723	6,65	0,76	0,195	0,195	02:00	0,0000			0,014	0,014
00:25	0,1236	6,65	0,80	0,467	0,467	02:05	0,0000			0,009	0,009
00:30	0,0857	4,77	0,60	0,707	0,707	02:10	0,0000			0,005	0,005
00:35	0,0602	4,77	0,63	0,708	0,708	02:15	0,0000			0,002	0,002
00:40	0,0461	4,77	0,65	0,625	0,625	02:20	0,0000			0,001	0,001
00:45	0,0343	3,57	0,50	0,548	0,548	02:25	0,0000			0,000	0,000
00:50	0,0270	3,57	0,51	0,492	0,492	02:30	0,0000			0,000	0,000
00:55	0,0217	3,57	0,53	0,456	0,456						
01:00	0,0185			0,420	0,420						
01:05	0,0143			0,382	0,382						
01:10	0,0113			0,326	0,326						
01:15	0,0085			0,256	0,256						
01:20	0,0058			0,190	0,190						
01:25	0,0017			0,143	0,143						
01:30	0,0000			0,108	0,108						
01:35	0,0000			0,081	0,081						

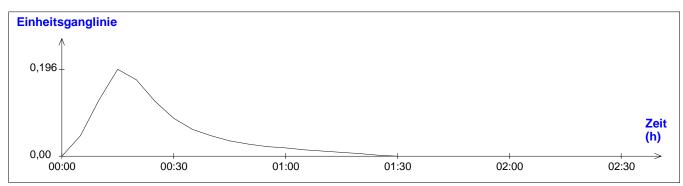
Projekt: Abflussberechnung Wassergräben L440 Bauherr: Prof. Dr.-Ing. E. Vees u. Partner GmbH

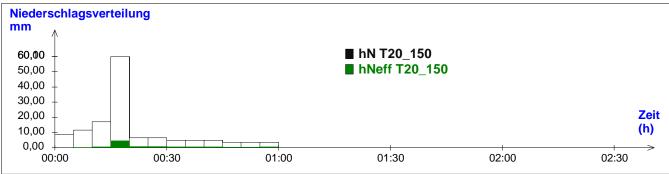
Stadt/Gemeinde: Meßstetten-Tieringen

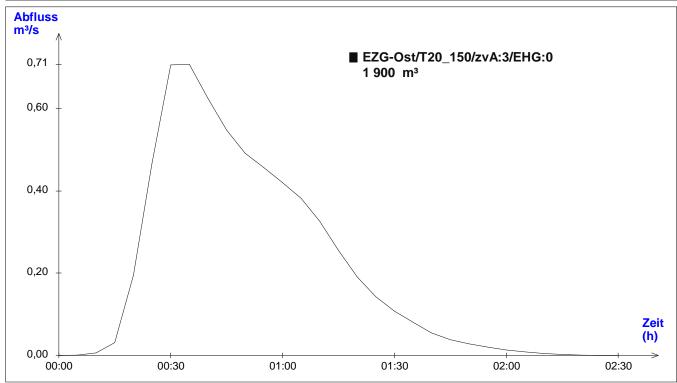
Einheits- und Abflussganglinie

Ergebnis: EZG-Ost / Regen: T20_150

Basisabfluss: Beginn: 0,000 [m³/s]


zeitl. Verlauf Abflussbeiwert: 3-Verfahren nach Lutz


Zeitpunkt: 00:15 [h] Zeitpunkt: 00:35 [h]


Ende: 0,000 [m³/s]

Einheitsganglinie: 0-Regionalisierung nach

LUTZ (normiert)

Projekt: Projekt: Abflussberechnung Wassergräben L440

Bauherr: Prof. Dr.-Ing. E. Vees u. Partner GmbH

Stadt/Gemeinde: Meßstetten-Tieringen

Grunddaten: EZG-West

Einzugsgebietsfläche: 0,116 [km²]

Anfangsverlust: 2,26 [mm] Basisabfluss Beginn: 0,000 [m³/s] Gesamtabflussbeiwert: 0,040 [-] mit LUTZ-Verfahren Basisabfluss Ende: 0,000 [m³/s]

Datum: 15.12.2016

Niederschlag: T2_175

Niederschlagsverteilung: Niederschlagsordinaten

Regendauer: 1,000 [h] Regenhöhe: 60,201 [mm]

Zeitlicher Verlauf Abflussbeiwert

Berechnungsverfahren: 3-Verfahren nach Lutz

Gebietsparameter:

Bebauungsanteil: 0,00 [%]

Landflächen:

Endabflussbeiwert: 0,692 [-] Anfangsverlust: 2,26 [mm]

Stadtflächen

Bebauungsanteil U 0,00 [%] Anfangsverlust AVS: 0,00 [mm]

versiegelt:

Abflussbeiwert: 0,000 [-]

Ereignisparameter

C1: 0,020 C2: 3,000 C3: 2,000 C4: 0,000

Ereignisdaten

Basisabfluss: 1,000 [(l/s)/km²] Monat: April

Niederschlagsdauer: 1,000 [h]

Einheitsganglinie

Berechnungsverfahren: 0-Regionalisierung nach LUTZ (normiert)

Gebietsfaktor P1: 0.250

 Länge L:
 0,650 [km]
 Länge LC:
 0,300 [km]

 Bebauungsanteil U:
 0,00 [%]
 Waldanteil W:
 59,00 [%]

 gewogenes Gefälle Ig:
 25,1900 [%]
 Monat:
 April

Mit normierter Einheitsganglinie nach Lutz

<u>Berechnungsparameter</u>

Datum: 15.12.2016

ISW Dipl.-Ing. FH Günther Eisele * 72149 Neustetten-Remmingsheim

Projekt: Abflussberechnung Wassergräben L440 Projekt:

Bauherr: Prof. Dr.-Ing. E. Vees u. Partner GmbH Stadt/Gemeinde: Meßstetten-Tieringen

Einheits- und Abflussganglinie

Ergebnis: EZG-West / Regen: T2_175

Einheitsganglinie: Abflussganglinie: Zeitpunkt: 00:15 [h] Zeitpunkt: 00:30 [h] Umax= 0,225 [1/dt] 0,133 [m³/s] Qmax=

Abflussvolumen: V= 290 $[m^3]$ Basisabfluss: 0,000 [m³/s] Beginn: Ende: 0,000 [m³/s]

zeitl. Verlauf Abflussbeiwert: 3-Verfahren nach Lutz Einheitsganglinie: 0-Regionalisierung nach

LUTZ (normiert)

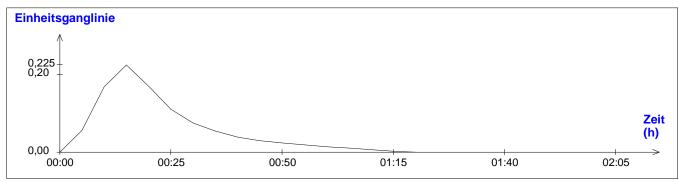
Zeit	U	hN	hNeff	QD	QG	Zeit	U	hN	hNeff	QD	QG
(h)	(1/dt)	(mm/dt)	(mm/dt)	(m ³ /s)	(m³/s)	(h)	(1/dt)	(mm/dt)	(mm/dt)	(m³/s)	(m³/s)
00:00	0,0000	4,50		0,000	0,000	01:15	0,0020			0,024	0,024
00:05	0,0560	6,00	0,05	0,000	0,000	01:20	0,0000			0,015	0,015
00:10	0,1680	9,10	0,17	0,002	0,002	01:25	0,0000			0,010	0,010
00:15	0,2246	24,00	1,03	0,010	0,010	01:30	0,0000			0,006	0,006
00:20	0,1694	3,10	0,19	0,052	0,052	01:35	0,0000			0,004	0,004
00:25	0,1105	3,10	0,20	0,117	0,117	01:40	0,0000			0,003	0,003
00:30	0,0745	2,07	0,14	0,133	0,133	01:45	0,0000			0,002	0,002
00:35	0,0538	2,07	0,15	0,110	0,110	01:50	0,0000			0,001	0,001
00:40	0,0384	2,07	0,16	0,091	0,091	01:55	0,0000			0,000	0,000
00:45	0,0294	1,40	0,11	0,080	0,080	02:00	0,0000			0,000	0,000
00:50	0,0235	1,40	0,11	0,072	0,072	02:05	0,0000			0,000	0,000
00:55	0,0186	1,40	0,11	0,065	0,065						
01:00	0,0142			0,059	0,059						
01:05	0,0105			0,051	0,051						
01:10	0,0067			0,038	0,038						

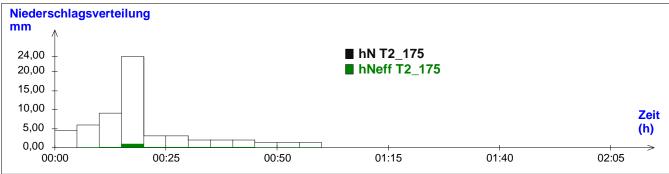
Projekt: Projekt: Abflussberechnung Wassergräben L440 Bauherr: Prof. Dr.-Ing. E. Vees u. Partner GmbH

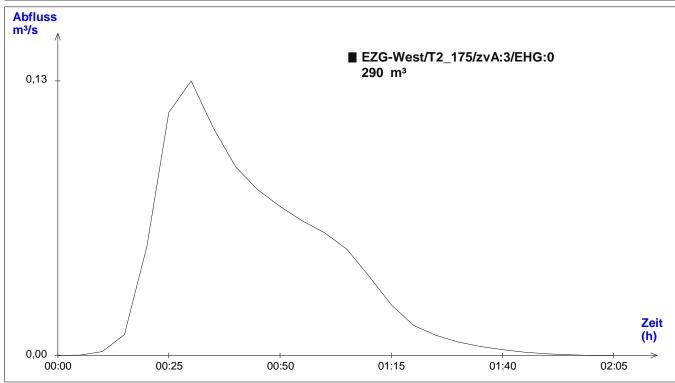
Stadt/Gemeinde: Meßstetten-Tieringen

Ergebnis: EZG-West / Regen: T2_175

Einheitsganglinie: Abflussganglinie: Umax= 0,225 [1/dt] Qmax= 0,133 [m³/s] Abflussvolumen: V= $[m^3]$


290 Basisabfluss: Beginn: 0,000 [m³/s]


Ende: 0,000 [m³/s] zeitl. Verlauf Abflussbeiwert: 3-Verfahren nach Lutz Einheitsganglinie: 0-Regionalisierung nach


LUTZ (normiert)

Zeitpunkt: 00:15 [h]

Zeitpunkt: 00:30 [h]

Projekt: Projekt: Abflussberechnung Wassergräben L440

Bauherr: Prof. Dr.-Ing. E. Vees u. Partner GmbH

Stadt/Gemeinde: Meßstetten-Tieringen

Grunddaten: EZG-West

Einzugsgebietsfläche: 0,116 [km²]

Anfangsverlust: 2,26 [mm] Basisabfluss Beginn: 0,000 [m³/s] Gesamtabflussbeiwert: 0,064 [-] mit LUTZ-Verfahren Basisabfluss Ende: 0,000 [m³/s]

Datum: 15.12.2016

Niederschlag: T5_167

Niederschlagsverteilung: Niederschlagsordinaten

Regendauer: 1,000 [h] Regenhöhe: 94,896 [mm]

Zeitlicher Verlauf Abflussbeiwert

Berechnungsverfahren: 3-Verfahren nach Lutz

Gebietsparameter:

Bebauungsanteil: 0,00 [%]

Landflächen:

Endabflussbeiwert: 0,692 [-] Anfangsverlust: 2,26 [mm]

Stadtflächen

Bebauungsanteil U 0,00 [%] Anfangsverlust AVS: 0,00 [mm]

versiegelt:

Abflussbeiwert: 0,000 [-]

Ereignisparameter

C1: 0,020 C2: 3,000 C3: 2,000 C4: 0,000

Ereignisdaten

Basisabfluss: 1,000 [(l/s)/km²] Monat: April

Niederschlagsdauer: 1,000 [h]

Einheitsganglinie

Berechnungsverfahren: 0-Regionalisierung nach LUTZ (normiert)

Gebietsfaktor P1: 0.250

 Länge L:
 0,650 [km]
 Länge LC:
 0,300 [km]

 Bebauungsanteil U:
 0,00 [%]
 Waldanteil W:
 59,00 [%]

 gewogenes Gefälle Ig:
 25,1900 [%]
 Monat:
 April

Mit normierter Einheitsganglinie nach Lutz

<u>Berechnungsparameter</u>

Projekt: Projekt: Abflussberechnung Wassergräben L440

Bauherr: Prof. Dr.-Ing. E. Vees u. Partner GmbH Stadt/Gemeinde: Meßstetten-Tieringen

Einheits- und Abflussganglinie

Ergebnis: EZG-West / Regen: T5_167

Einheitsganglinie: Umax= 0,225 [1/dt] Zeitpunkt: 00:15 [h] Abflussganglinie: Qmax= 0,322 [m³/s] Zeitpunkt: 00:30 [h]

Abflussvolumen: V= 710 [m³]
Basisabfluss: Beginn: 0,000 [m³/s]

Basisabfluss: Beginn: 0,000 [m³/s] Ende: 0,000 [m³/s] zeitl.Verlauf Abflussbeiwert: 3-Verfahren nach Lutz Einheitsganglinie: 0-Regionalisierung nach

LUTZ (normiert)

Zeit	U	hN	hNeff	QD	QG	Zeit	U	hN	hNeff	QD	QG
(h)	(1/dt)	(mm/dt)	(mm/dt)	(m³/s)	(m³/s)	(h)	(1/dt)	(mm/dt)	(mm/dt)	(m³/s)	(m³/s)
00:00	0,0000	6,40	0,01	0,000	0,000	01:15	0,0020			0,072	0,072
00:05	0,0560	8,70	0,11	0,000	0,000	01:20	0,0000			0,047	0,047
00:10	0,1680	12,70	0,36	0,004	0,004	01:25	0,0000			0,029	0,029
00:15	0,2246	40,50	2,66	0,020	0,020	01:30	0,0000			0,020	0,020
00:20	0,1694	4,75	0,46	0,111	0,111	01:35	0,0000			0,014	0,014
00:25	0,1105	4,75	0,49	0,262	0,262	01:40	0,0000			0,009	0,009
00:30	0,0745	3,30	0,35	0,322	0,322	01:45	0,0000			0,006	0,006
00:35	0,0538	3,30	0,37	0,274	0,274	01:50	0,0000			0,004	0,004
00:40	0,0384	3,30	0,38	0,228	0,228	01:55	0,0000			0,002	0,002
00:45	0,0294	2,40	0,29	0,198	0,198	02:00	0,0000			0,001	0,001
00:50	0,0235	2,40	0,29	0,180	0,180	02:05	0,0000			0,000	0,000
00:55	0,0186	2,40	0,30	0,164	0,164	02:10	0,0000			0,000	0,000
01:00	0,0142			0,151	0,151						
01:05	0,0105			0,135	0,135						
01:10	0,0067			0,105	0,105						

Projekt: Abflussberechnung Wassergräben L440
Bauherr: Prof. Dr.-Ing. E. Vees u. Partner GmbH

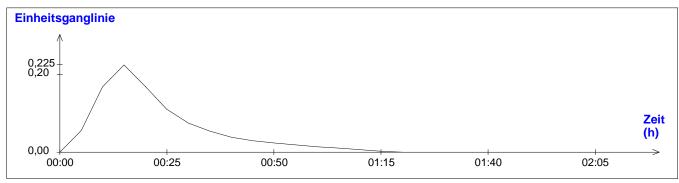
Stadt/Gemeinde: Meßstetten-Tieringen

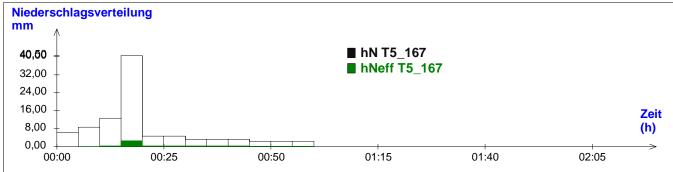
Einheits- und Abflussganglinie

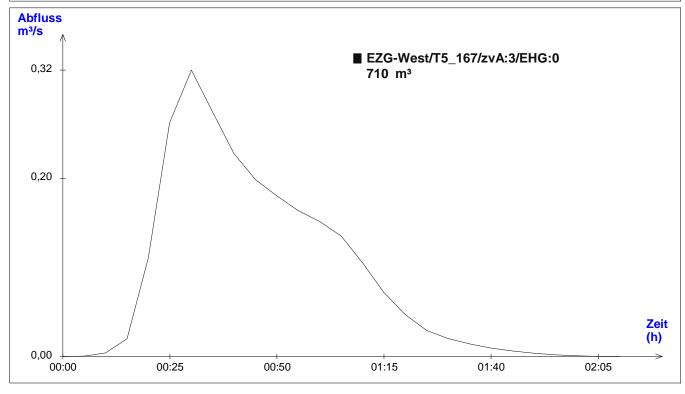
Ergebnis: EZG-West / Regen: T5_167

Einheitsganglinie: Umax= 0,225 [1/dt] Abflussganglinie: Qmax= 0,322 [m^3/s] Abflussvolumen: V= 710 [m^3]

Basisabfluss: Beginn: 0,000 [m³/s]


zeitl. Verlauf Abflussbeiwert: 3-Verfahren nach Lutz Einheitsganglinie: 0-Regionalisierung nach


LUTZ (normiert)


Zeitpunkt: 00:15 [h]

Zeitpunkt: 00:30 [h]

Ende: 0,000 [m³/s]

Projekt: Projekt: Abflussberechnung Wassergräben L440

Bauherr: Prof. Dr.-Ing. E. Vees u. Partner GmbH

Stadt/Gemeinde: Meßstetten-Tieringen

Grunddaten: EZG-West

Einzugsgebietsfläche: 0,116 [km²]

Anfangsverlust: 2,26 [mm] Basisabfluss Beginn: 0,000 [m³/s] Gesamtabflussbeiwert: 0,079 [-] mit LUTZ-Verfahren Basisabfluss Ende: 0,000 [m³/s]

Datum: 15.12.2016

Niederschlag: T10_160

Niederschlagsverteilung: Niederschlagsordinaten

Regendauer: 1,000 [h] Regenhöhe: 117,999 [mm]

Zeitlicher Verlauf Abflussbeiwert

Berechnungsverfahren: 3-Verfahren nach Lutz

Gebietsparameter:

Bebauungsanteil: 0,00 [%]

Landflächen:

Endabflussbeiwert: 0,692 [-] Anfangsverlust: 2,26 [mm]

Stadtflächen

Bebauungsanteil U 0,00 [%] Anfangsverlust AVS: 0,00 [mm]

versiegelt:

Abflussbeiwert: 0,000 [-]

Ereignisparameter

C1: 0,020 C2: 3,000 C3: 2,000 C4: 0,000

Ereignisdaten

Basisabfluss: 1,000 [(l/s)/km²] Monat: April

Niederschlagsdauer: 1,000 [h]

Einheitsganglinie

Berechnungsverfahren: 0-Regionalisierung nach LUTZ (normiert)

Gebietsfaktor P1: 0.250

 Länge L:
 0,650 [km]
 Länge LC:
 0,300 [km]

 Bebauungsanteil U:
 0,00 [%]
 Waldanteil W:
 59,00 [%]

 gewogenes Gefälle Ig:
 25,1900 [%]
 Monat:
 April

Mit normierter Einheitsganglinie nach Lutz

<u>Berechnungsparameter</u>

Datum: 15.12.2016

ISW Dipl.-Ing. FH Günther Eisele * 72149 Neustetten-Remmingsheim

Projekt: Abflussberechnung Wassergräben L440 Projekt:

Bauherr: Prof. Dr.-Ing. E. Vees u. Partner GmbH Stadt/Gemeinde: Meßstetten-Tieringen

Einheits- und Abflussganglinie

Ergebnis: EZG-West / Regen: T10_160

Einheitsganglinie: Abflussganglinie: Zeitpunkt: 00:15 [h] Zeitpunkt: 00:30 [h] Umax= 0,225 [1/dt] 0,482 [m³/s] Qmax= Abflussvolumen: 1 090 V=

 $[m^3]$ Basisabfluss: 0,000 [m³/s] Beginn: Ende: 0,000 [m³/s]

zeitl. Verlauf Abflussbeiwert: 3-Verfahren nach Lutz Einheitsganglinie: 0-Regionalisierung nach

LUTZ (normiert)

Zeit	U	hN	hNeff	QD	QG	Zeit	U	hN	hNeff	QD	QG
(h)	(1/dt)	(mm/dt)	(mm/dt)	(m^3/s)	(m³/s)	(h)	(1/dt)	(mm/dt)	(mm/dt)	(m³/s)	(m³/s)
00:00	0,0000	7,80	0,02	0,000	0,000	01:15	0,0020			0,121	0,121
00:05	0,0560	10,30	0,16	0,001	0,001	01:20	0,0000			0,083	0,083
00:10	0,1680	15,30	0,53	0,005	0,005	01:25	0,0000			0,056	0,056
00:15	0,2246	51,40	4,14	0,026	0,026	01:30	0,0000			0,036	0,036
00:20	0,1694	5,85	0,69	0,149	0,149	01:35	0,0000			0,025	0,025
00:25	0,1105	5,85	0,73	0,366	0,366	01:40	0,0000			0,018	0,018
00:30	0,0745	4,10	0,54	0,482	0,482	01:45	0,0000			0,012	0,012
00:35	0,0538	4,10	0,56	0,422	0,422	01:50	0,0000			0,008	0,008
00:40	0,0384	4,10	0,58	0,350	0,350	01:55	0,0000			0,005	0,005
00:45	0,0294	3,07	0,45	0,305	0,305	02:00	0,0000			0,002	0,002
00:50	0,0235	3,07	0,46	0,279	0,279	02:05	0,0000			0,001	0,001
00:55	0,0186	3,07	0,47	0,252	0,252	02:10	0,0000			0,000	0,000
01:00	0,0142			0,234	0,234	02:15	0,0000			0,000	0,000
01:05	0,0105			0,213	0,213						
01:10	0,0067			0,170	0,170						

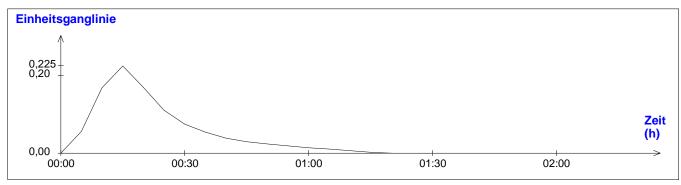
Projekt: Projekt: Abflussberechnung Wassergräben L440 Bauherr: Prof. Dr.-Ing. E. Vees u. Partner GmbH

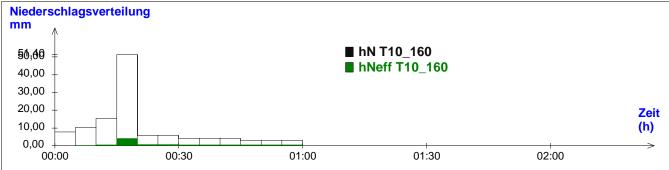
Stadt/Gemeinde: Meßstetten-Tieringen

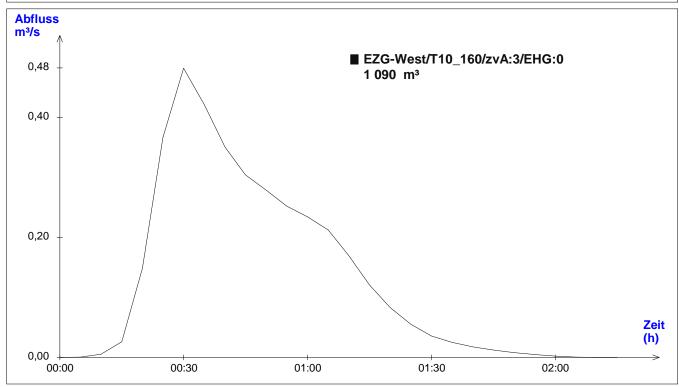
Einheits- und Abflussganglinie

Ergebnis: EZG-West / Regen: T10_160

Einheitsganglinie: Umax= 0,225 [1/dt] Abflussganglinie: 0,482 [m³/s] Qmax= Abflussvolumen: V= 1 090 $[m^3]$


Basisabfluss: Beginn: 0,000 [m³/s]


Ende: 0,000 [m³/s] zeitl. Verlauf Abflussbeiwert: 3-Verfahren nach Lutz Einheitsganglinie: 0-Regionalisierung nach


LUTZ (normiert)

Zeitpunkt: 00:15 [h]

Zeitpunkt: 00:30 [h]

Projekt: Projekt: Abflussberechnung Wassergräben L440

Bauherr: Prof. Dr.-Ing. E. Vees u. Partner GmbH

Stadt/Gemeinde: Meßstetten-Tieringen

Grunddaten: EZG-West

Einzugsgebietsfläche: 0,116 [km²]

Anfangsverlust: 2,26 [mm] Basisabfluss Beginn: 0,000 [m³/s] Gesamtabflussbeiwert: 0,090 [-] mit LUTZ-Verfahren Basisabfluss Ende: 0,000 [m³/s]

Datum: 15.12.2016

Niederschlag: T20_150

Niederschlagsverteilung: Niederschlagsordinaten

Regendauer: 1,000 [h] Regenhöhe: 136,005 [mm]

Zeitlicher Verlauf Abflussbeiwert

Berechnungsverfahren: 3-Verfahren nach Lutz

Gebietsparameter:

Bebauungsanteil: 0,00 [%]

Landflächen:

Endabflussbeiwert: 0,692 [-] Anfangsverlust: 2,26 [mm]

Stadtflächen

Bebauungsanteil U 0,00 [%] Anfangsverlust AVS: 0,00 [mm]

versiegelt:

Abflussbeiwert: 0,000 [-]

Ereignisparameter

C1: 0,020 C2: 3,000 C3: 2,000 C4: 0,000

Ereignisdaten

Basisabfluss: 1,000 [(l/s)/km²] Monat: April

Niederschlagsdauer: 1,000 [h]

Einheitsganglinie

Berechnungsverfahren: 0-Regionalisierung nach LUTZ (normiert)

Gebietsfaktor P1: 0.250

 Länge L:
 0,650 [km]
 Länge LC:
 0,300 [km]

 Bebauungsanteil U:
 0,00 [%]
 Waldanteil W:
 59,00 [%]

 gewogenes Gefälle Ig:
 25,1900 [%]
 Monat:
 April

Mit normierter Einheitsganglinie nach Lutz

<u>Berechnungsparameter</u>

Datum: 15.12.2016

ISW Dipl.-Ing. FH Günther Eisele * 72149 Neustetten-Remmingsheim

Projekt: Projekt: Abflussberechnung Wassergräben L440

Bauherr: Prof. Dr.-Ing. E. Vees u. Partner GmbH Stadt/Gemeinde: Meßstetten-Tieringen

Einheits- und Abflussganglinie

Ergebnis: EZG-West / Regen: T20_150

Einheitsganglinie: Abflussganglinie: Zeitpunkt: 00:15 [h] Zeitpunkt: 00:30 [h] Umax= 0,225 [1/dt] 0,614 [m³/s] Qmax= Abflussvolumen: 1 430 V= $[m^3]$

Basisabfluss: 0,000 [m³/s] Beginn: Ende: 0,000 [m³/s]

zeitl. Verlauf Abflussbeiwert: 3-Verfahren nach Lutz Einheitsganglinie: 0-Regionalisierung nach

LUTZ (normiert)

Zeit	U	hN	hNeff	QD	QG	Zeit	U	hN	hNeff	QD	QG
(h)	(1/dt)	(mm/dt)	(mm/dt)	(m^3/s)	(m³/s)	(h)	(1/dt)	(mm/dt)	(mm/dt)	(m³/s)	(m³/s)
00:00	0,0000	8,90	0,03	0,000	0,000	01:15	0,0020			0,167	0,167
00:05	0,0560	11,60	0,22	0,001	0,001	01:20	0,0000			0,119	0,119
00:10	0,1680	17,10	0,67	0,007	0,007	01:25	0,0000			0,084	0,084
00:15	0,2246	60,10	5,51	0,032	0,032	01:30	0,0000			0,055	0,055
00:20	0,1694	6,65	0,89	0,185	0,185	01:35	0,0000			0,037	0,037
00:25	0,1105	6,65	0,95	0,453	0,453	01:40	0,0000			0,027	0,027
00:30	0,0745	4,77	0,71	0,614	0,614	01:45	0,0000			0,019	0,019
00:35	0,0538	4,77	0,74	0,553	0,553	01:50	0,0000			0,013	0,013
00:40	0,0384	4,77	0,76	0,465	0,465	01:55	0,0000			0,008	0,008
00:45	0,0294	3,57	0,59	0,405	0,405	02:00	0,0000			0,005	0,005
00:50	0,0235	3,57	0,60	0,368	0,368	02:05	0,0000			0,002	0,002
00:55	0,0186	3,57	0,62	0,335	0,335	02:10	0,0000			0,000	0,000
01:00	0,0142			0,311	0,311	02:15	0,0000			0,000	0,000
01:05	0,0105			0,282	0,282	02:20	0,0000			0,000	0,000
01:10	0,0067			0,230	0,230						

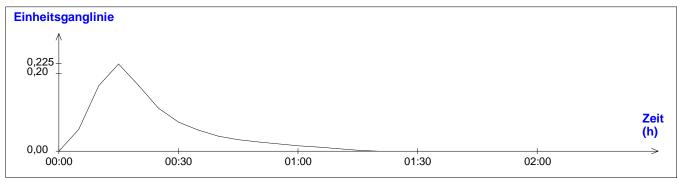
Projekt: Projekt: Abflussberechnung Wassergräben L440 Bauherr: Prof. Dr.-Ing. E. Vees u. Partner GmbH

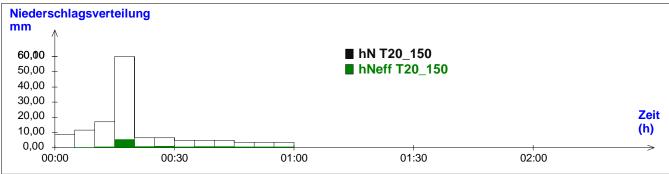
Stadt/Gemeinde: Meßstetten-Tieringen

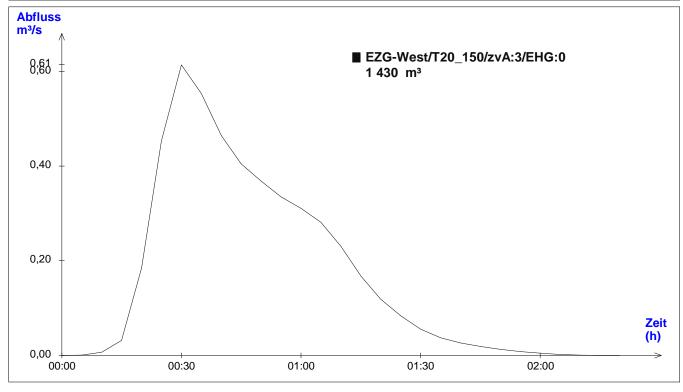
Einheits- und Abflussganglinie

Ergebnis: EZG-West / Regen: T20_150

Einheitsganglinie: Umax= 0,225 [1/dt] Abflussganglinie: 0,614 [m³/s] Qmax= Abflussvolumen: 1 430 V= $[m^3]$


Basisabfluss: Beginn: 0,000 [m³/s]


Ende: 0,000 [m³/s] zeitl. Verlauf Abflussbeiwert: 3-Verfahren nach Lutz Einheitsganglinie: 0-Regionalisierung nach


LUTZ (normiert)

Zeitpunkt: 00:15 [h]

Zeitpunkt: 00:30 [h]

